|
|
|
|
姓名 |
张学礼 |
性别 |
男 |
专家类别 |
N/A |
职称 |
研究员 |
学历 |
博士研究生 |
电话 |
022-84861983 |
传真 |
N/A |
电子邮件 |
zhang_xl@tib.cas.cn |
地址 |
天津市空港经济区西七道32号 |
邮编 |
300308 |
|
|
简历 |
1996.09-2000.07 上海交通大学,学士 2000.09-2005.07 上海交通大学,博士 2005.08-2007.07 美国佛罗里达大学,博士后 2007.07-2010.01 美国佛罗里达大学,科研助理教授 2010.01-至今 中国科学院天津工业生物技术研究所 研究员 |
研究方向: |
研究方向为合成生物学与基因编辑。主要从事应用合成生物学技术构建高效微生物细胞工厂,生产氨基酸、维生素、材料化学品和植物天然产物;开发新型基因编辑技术,用于遗传疾病的基因治疗。 |
承担科研项目情况: |
1. 国家自然科学基金杰出青年计划,微生物细胞工厂(32225031),主持,2023.01-2027.12 2. 国家重点研发计划,微生物化学品工厂的途径创建及应用(2019YFA0904900),主持,2020.01-2024.12 3. 国家自然科学基金优秀青年基金,微生物遗传育种(31522002),主持,2016.01-2018.12 4. 国家高技术研究发展计划(863计划),基因组规模系统代谢育种(2012AA022104),主持,2012.11-2015.12 5. 中国科学院重点部署项目,合成非天然基因组生产植物天然产物(KFZD-SW-215),主持,2018.01-2019.12 |
获奖及荣誉: |
入选多项国家级、省部级人才计划,并以第一完成人获中国轻工业联合会技术发明奖一等奖、中国专利优秀奖等。 |
代表论著: |
- Zhao D, Li J, Li S, Xin X, Hu M, Marcus A. Price, Susan J. Rosser, Bi C*, Zhang X*. Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology. 2021, 39:35–40.
- Wu Y, Wan X, Zhao D, Chen X, Wang J, Tang X, Li J, Li S, Sun X*, Bi C*, Zhang X*. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa. Nature Communications. 2023, 14(1):4923.
- Yang C, Ma Z, Wang K, Dong X, Huang M, Li Y, Zhu X, Li J, Cheng Z, Bi C*, Zhang X*. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. Nature Communications. 2023, 14(1):2430.
- Chen R, Cao Y, Liu Y, Zhao D, Li J, Cheng Z, Bi C*, Zhang X*. Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor. Nature Communications. 2023, 14(1):257.
- Li S, An J, Li Y, Zhu X, Zhao D, Wang L, Sun Y, Yang Y, Bi C*, Zhang X*, Wang M*. Automated high-throughput genome editing platform with an AI learning in situ prediction model. Nature Communications. 2022, 13(1):7386.
- Zhu H, Xu L, Luan G, Zhan T, Kang Z, Li C, Lu X*, Zhang X*, Zhu Z*, Zhang Y*, Li Y*. A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nature Communications. 2022, 13(1):5608.
- Zhao D, Jiang G, Li J, Chen X, Li S, Wang J, Zhou Z, Pu S, Dai Z, Ma Y, Bi C*, Zhang X*. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research. 2022, 50:4161-4170.
- Wang P, Zhao D, Li J, Su J, Zhang C, Li S, Fan F, Dai Z, Liao X, Mao Z, Bi C*, Zhang X*. Artificial diploid Escherichia coli by a CRISPR chromosome-doubling technique. Advanced Science. 2023, 10(7):e2205855.
- Yang C, Dong X, Ma Z, Li B, Bi C*, Zhang X*. Pioneer factor improves CRISPR-based C-to-G and C-to-T Base Editing. Advanced Science. 2022, 9(26):e2202957.
- Xi Y, Xu H, Zhan T, Qin Y, Fan F*, Zhang X*. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. Metab Eng. 2022, 75:170-180.
- Xu L, Wang D, Chen J, Li B, Li Q, Liu P, Qin Y, Dai Z*, Fan F*, Zhang X*. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng. 2022, 70:115-128.
- Wang J, Zhao D, Li J, Hu M, Xin X, Price MA, Li Q, Liu L, Li S, Rosser SJ, Zhang C*, Bi C*, Zhang X*. Helicase-AID. A novel molecular device for base editing at random genomic loci. Metab Eng. 2021, 67:396-402.
- Shi Y, Wang D, Li R, Huang L, Dai Z*, Zhang X*. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metab Eng. 2021, 67:104-111.
- Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C*, Zhang X*. CRISPR-based metabolic pathway engineering. Metab Eng. 2021, 63:148-159.
- Wang D, Wang J, Shi Y, Li R, Fan F, Huang Y, Li W, Chen N, Huang L, Dai Z*, Zhang X*. Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform. Metab Eng. 2020, 61:131-140.
- Yu Y, Shao M, Li D, Fan F, Xu H, Lu F, Bi C, Zhu X*, Zhang X*. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli. Metab Eng. 2020, 61:152-159.
- Chen J, Fan F, Qu G, Tang J, Xi Y, Bi C, Sun Z*, Zhang X*. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020, 57:31-42.
- Yu Y, Zhu X, Xu H, Zhang X*. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab Eng. 2019, 56:181-189.
- Dai Z, Liu Y, Sun Z, Wang D, Qu G, Ma X, Fan F, Zhang L, Li S, Zhang X*. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab Eng. 2019, 51:70-78.
- Li Q, Fan F, Gao X, Yang C, Bi C, Tang J, Liu T, Zhang X*. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metab Eng. 2017, 44:13-21.
- Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C*, Zhang X*. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng. 2017, 43:85-91.
- Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C*, Zhang X*. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng. 2017, 43:37-45.
- Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X*. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng. 2014, 24:87-96.
- Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L*, Zhang X*. Metabolic engineering ofSaccharomyces cerevisiaefor production of ginsenosides.Metab Eng.2013, 20:146-156.
- Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X*, Ma Y. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng. 2013, 17: 42-50.
- Shi A, Zhu X, Lu J, Zhang X*, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013, 16:1-10.
|
|
|
|
|
|
|
|
|
|