(1) Shi, L.; Liu, P.; Tan, Z.; Zhao, W.; Gao, J.; Gu, Q.; Ma, H.; Liu, H.; Zhu, L. Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. Angew. Chemie - Int. Ed. 2023, 62 (14). https://doi.org/10.1002/anie.202218390.
(2) Zhang, T.; Liu, P.; Wei, H.; Sun, X.; Zeng, Y.; Zhang, X.; Cai, Y.; Cui, M.; Ma, H.; Liu, W.; others. Protein Engineering of Glucosylglycerol Phosphorylase Facilitating Efficient and Highly Regio-and Stereoselective Glycosylation of Polyols in a Synthetic System. ACS Catal. 2022, 12, 15715–15727.
(3) Nie, Z.; Liu, P.; Wang, Y.; Guo, X.; Tan, Z.; Shen, J.; Tang, Z.; Lin, J.; Sun, J.; Zheng, P.; Zhu, L. Directed Evolution and Rational Design of Mechanosensitive Channel MscCG2 for Improved Glutamate Excretion Efficiency. J. Agric. Food Chem. 2021, 69 (51), 15660–15669. https://doi.org/10.1021/acs.jafc.1c07086.
(4) Zhang, P.; Liu, X.; Liu, P.; Wang, F.; Ariyama, H.; Ando, T.; Lin, J.; Wang, L.; Hu, J.; Li, B.; Fan, C. Capturing Transient Antibody Conformations with DNA Origami Epitopes. Nat. Commun. 2020, 11 (1), 1–9. https://doi.org/10.1038/s41467-020-16949-4.
(5) Cheng, C.; Haider, J.; Liu, P.; Yang, J.; Tan, Z.; Huang, T.; Lin, J.; Jiang, M.; Liu, H.; Zhu, L. Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose. J. Agric. Food Chem. 2020, 68 (51), 15257–15266. https://doi.org/10.1021/acs.jafc.0c05979.
(6) Liu, X.; Jing, X.; Liu, P.; Pan, M.; Liu, Z.; Dai, X.; Lin, J.; Li, Q.; Wang, F.; Yang, S.; Wang, L.; Fan, C. DNA Framework-Encoded Mineralization of Calcium Phosphate. Chem 2020, 6 (2), 472–485. https://doi.org/10.1016/j.chempr.2019.12.003.
(7) Liu, X.; Zhao, Y.; Liu, P.; Wang, L.; Lin, J.; Fan, C. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. Angew. Chemie - Int. Ed. 2019, 58 (27), 8996–9011. https://doi.org/10.1002/anie.201807779.
(8) Song, H.; Ma, C.; Liu, P.; You, C.; Lin, J.; Zhu, Z. A Hybrid CO2 Electroreduction System Mediated by Enzyme-Cofactor Conjugates Coupled with Cu Nanoparticle-Catalyzed Cofactor Regeneration. J. CO2 Util. 2019, 34 (August), 568–575. https://doi.org/10.1016/j.jcou.2019.08.007.
(9) Cao, L.; Liu, P.; Yang, P.; Gao, Q.; Li, H.; Sun, Y.; Zhu, L.; Lin, J.; Su, D.; Rao, Z.; Wang, X. Structural Basis for Neutralization of Hepatitis A Virus Informs a Rational Design of Highly Potent Inhibitors. PLoS Biol. 2019, 17 (4), 1–20. https://doi.org/10.1371/journal.pbio.3000229.
(10) Liu, P.; Zhao, Y.; Liu, X.; Sun, J.; Xu, D.; Li, Y.; Li, Q.; Wang, L.; Yang, S.; Fan, C.; Lin, J. Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. Angew. Chemie - Int. Ed. 2018, 57 (19), 5418–5422. https://doi.org/10.1002/anie.201801498.
(11) Meng, H.; Liu, P.; Sun, H.; Cai, Z.; Zhou, J.; Lin, J.; Li, Y. Engineering a D-Lactate Dehydrogenase That Can Super-Efficiently Utilize NADPH and NADH as Cofactors. Sci. Rep. 2016, 6 (April), 1–8. https://doi.org/10.1038/srep24887.
(12) Han, L.; Liu, P.; Sun, J.; Wu, Y.; Zhang, Y.; Chen, W.; Lin, J.; Wang, Q.; Ma, Y. Engineering Catechol 1, 2-Dioxygenase by Design for Improving the Performance of the Cis, Cis-Muconic Acid Synthetic Pathway in Escherichia Coli. Sci. Rep. 2015, 5 (February), 1–11. https://doi.org/10.1038/srep13435.