研究员/正高级工程师
薛超友

薛超友


  • 职  称:研究员
  • 学  历:博士研究生
  • 导师类别:博士生导师
  • 通讯地址:天津市空港经济区西七道32号
  • 邮政编码:300308
  • 电子邮件:xuechy@tib.cas.cn
  • 部  门:单分子与基因编辑研究组

简历

2021.01-至今        中国科学院天津工业生物技术研究所研究员、博导

2017.12-2020.12     美国哥伦比亚大学,博士后

2013.08-2017.12     美国爱荷华州立大学,博士

2010.09-2013.07     天津大学,硕士

2006.09-2010.07     西北农林科技大学,学士

研究方向

主要研究方向是利用单分子荧光能量共振转移及单分子DNA帘技术等多种单分子技术阐明CRISPR/Cas系统的基本工作原理,开发新型的基因编辑工具;利用单分子技术研究DNA修复途径中的关键机制,开发高效的基因修复方法;利用单分子技术研究非模式菌株外源DNA转化、DNA同源重组机制,针对非模式工业菌株开发高效的遗传操作;建立工业菌种基因组大片段DNA的简易替换方法,提高高附加值天然产物的产量。

获奖及荣誉

2015年获得天津市优秀硕士论文奖

2017年获得爱荷华州立大学最佳博士论文奖

2020年入选Journal of Biological Chemistry青年编委

2021年入选中国科学院人才计划

2022年入选天津市人才计划

2022年入学国家海外高层次人才计划

代表成果

  1. Salunkhe S*, Daley J*, Xue C*, Tomimatsu N*, Kaur H*, Raina V, Jasper A, Rogers C, Li W, Zhou S, Mojidra R, Kwon Y, Dinh H, Mukherjee, Habib A, Hromas R, Mazin A, Wasmuth E, Olsen S, Libich D, Zhou D, Zhao W, Greene E C#, Burma S#, Sung P#. Promotion of DNA end resection by the BRCA1-BARD1 tumor suppressor in homologous recombination. (submitted)
  2. Li M*, Cai Z*, Song S*, Ju H, Lu W, Rao S#, Zhang C#, Xue C#. EcCas6e-based antisense crRNA for gene repression and RNA editing. (submitted)
  3. Yang C*, Zhou Z*, Sun X, Ju H, Yue X, Rao S#, Xue C#. PAMless SpRY exhibits a preference for the seed region for efficient targeting. (submitted)
  4. Yao Y*, Zhou Z*, Wang X, Liu Z, Zhai Y, Chi X, Du J, Zhao Z, Xue C#, Rao S#. SpRY-mediated CRISPR screening facilitates functional dissection of non-coding sequences at single-base resolution. (submitted)
  5. Xue C*, Salunkhe S*, Tomimatsu N, Kawale A, Kwon Y, Burma S, Sung P, Greene E C. Bloom helicase mediates formation of large single-strand DNA loops during DNA end processing. Nature Commun. 2022
  6. Xue C, Greene E C. Factors favoring HDR Choice in Response to CRISPR/Cas9 induced-DSB. Trends in Genetics. 2021(影响因子: 10.6
  7. Xue C*, Molnarvova L*, Steinfeld J, Zhao W, Ma C, Spirek M, Kaniecki K, Kwon Y, Beláñ O, Boulton S, Sung P, Greene E C, Krejci L. Single-Molecule visualization of human RECQ5 interactions with single-stranded DNA recombination intermediates. Nucleic Acids Res. 2021. 1(49):285-305.(影响因子: 11.5
  8. Meir A*, Kong M*, Xue C, Greene E C. DNA curtains shed Light on Complex Molecular Systems During Homologous Recombination. J. Vis. Exp, e61320, 2020. (in press).(影响因子: 1.1
  9. Kong M*, Cutts E*, Pan D, Beuron F, Kaliyappan T, Xue C, Morries E, Musacchio A, Vannini A, Greene E C. Human condensing I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol Cell. 2020, 79:1-16.(影响因子: 15.6
  10. Jia N*, Unciuleac M*, Xue C, Greene E C, Patel D, Shuman S. Structures and single-molecule kinetics analysis of the motor-nuclease AdnAB illuminate the mechanism of DNA double-strand break resection. PNAS. 2019. 116 (49): 24507-24516.(影响因子: 9.6
  11. Xue C, Daley J, Xue X, Steinfeld J, Kwon Y, Sung P, Greene E C. Single-Molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res. 2019, 1.1035.(影响因子: 11.5
  12. Yan Z, Xue C, Kumar S, Crickard J B, Yu Yang, Wang W, Pham N, Sung P, Greene E C, Ira G. Rad52 regulates resection at DNA double strand break ends. Mol Cell. 2019, 1:1-13.(影响因子: 15.6
  13. Crickard J B, Xue C, Wang W, Kwon Y, Sung P, Greene E C. The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res, 2019, 47(9): 4694-4706.(影响因子: 11.5
  14. Xue C, Wang W, Crickard J B, Moevus C J, Kwon Y, Sung P, Greene E C. Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. PNAS, 2019, 116 (23), 6091-6100.(影响因子: 9.6
  15. Xue C, Greene E C. New roles for RAD52 in DNA repair. Cell Res, 2018, 28:1127-1128.(影响因子: 20.5
  16. Phan PT, Schelling M, Xue C, Sashital D G. Fluorescence-based methods for measuring target interference by CRISPR-Cas systems. Methods Enzymol, 2019, 616, 61-85.(影响因子: 1.9
  17. Xue C, Sashital D G. Mechanisms of Type IE and IF CRISPR-Cas Systems in Enterobacteriaceae, EcoSal Plus, 2019, 8(2).
  18. Xue C, Zhu Y, Hawk B, Yin L, Shin Y K, Sashital D G. Real-time observation of target search by the CRISPR surveillance complex Cascade. Cell reports, 2017, 21(13), 3717-3727.(影响因子: 8.1
  19. Xue C, Whitis N, Sashital D G. Conformational control of Cascade interference and priming activities in CRISPR immunity. Mol Cell, 2016, 64(4), 826-834.(影响因子: 15.6
  20. Xue C, Seetharam A S, Musharova O, Severinov K, Brouns S J, Severin A J, & Sashital D G. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res, 2015, 43(22): 10831-10847.(影响因子: 11.5
  21. Xue C, Duan Y, Zhao F, & Lu W. Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem Eng J, 2013, 72: 90-95. (影响因子: 3.5
  22. Xue C*, Zhang X*, Yu Z, Zhao F, Wang M, & Lu W. Up-regulated spinosad pathway coupling with the increased concentration of acetyl-CoA and malonyl-CoA contributed to the increase of spinosad in the presence of exogenous fatty acid. Biochem Eng J, 2013, 81: 47-53.(影响因子: 3.5
  23. Zhang X, Xue C, Zhao F, Li D, Yin J, Zhang C, Caiyin Q, Lu W. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in S. spinosa. Microb Cell Fact, 2014,13:98.(影响因子: 4.2
  24. Zhao F, Xue C, Wang M, Wang X, Lu W. A comparative metabolomics analysis of S. spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield. Biosci Biotech Biochem, 2013, 77(8): 1661-1668. (影响因子: 1.5
  25. Zhu L, Yang X, Xue C, Chen Y, Qu L, & Lu W. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour Technol, 2012, 117: 208-213. (影响因子: 7.5
  26. Yang X, Zhu L, Xue C, Chen Y, Qu L, & Lu W. Recovery of purified lactonic sophorolipids by spontaneous crystallization during the fermentation of sugarcane molasses with Candida albicans O-13-1. Enzyme Microb Technol, 2012, 51(6): 348-353. (影响因子: 3.4