国家杰出青年基金获得者
张学礼

张学礼


  • 职  称:研究员
  • 学  历:博士研究生
  • 导师类别:博士生导师
  • 通讯地址:天津市空港经济区西七道32号
  • 电  话:022-84861983
  • 邮政编码:300308
  • 电子邮件:zhang_xl@tib.cas.cn
  • 部  门:微生物代谢工程研究组

简历

1996.09-2000.07   上海交通大学,学士

2000.09-2005.07   上海交通大学,博士

2005.08-2007.07   美国佛罗里达大学,博士后

2007.07-2010.01   美国佛罗里达大学,科研助理教授

2010.01-至今      中国科学院天津工业生物技术研究所  研究员

研究方向

研究方向为合成生物学与基因编辑。主要从事应用合成生物学技术构建高效微生物细胞工厂,生产氨基酸、维生素、材料化学品和植物天然产物;开发新型基因编辑技术,用于遗传疾病的基因治疗。

获奖及荣誉

入选多项国家级、省部级人才计划,并以第一完成人获中国轻工业联合会技术发明奖一等奖、中国专利优秀奖等。

代表成果

  1. Zhao D, Li J, Li S, Xin X, Hu M, Marcus A. Price, Susan J. Rosser, Bi C*, Zhang X*. Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology. 2021, 39:35–40.
  2. Wu Y, Wan X, Zhao D, Chen X, Wang J, Tang X, Li J, Li S, Sun X*, Bi C*, Zhang X*. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa. Nature Communications. 2023, 14(1):4923.
  3. Yang C, Ma Z, Wang K, Dong X, Huang M, Li Y, Zhu X, Li J, Cheng Z, Bi C*, Zhang X*. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. Nature Communications. 2023, 14(1):2430.
  4. Chen R, Cao Y, Liu Y, Zhao D, Li J, Cheng Z, Bi C*, Zhang X*. Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor. Nature Communications. 2023, 14(1):257.
  5. Li S, An J, Li Y, Zhu X, Zhao D, Wang L, Sun Y, Yang Y, Bi C*, Zhang X*, Wang M*. Automated high-throughput genome editing platform with an AI learning in situ prediction model. Nature Communications. 2022, 13(1):7386.
  6. Zhu H, Xu L, Luan G, Zhan T, Kang Z, Li C, Lu X*, Zhang X*, Zhu Z*, Zhang Y*, Li Y*. A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nature Communications. 2022, 13(1):5608.
  7. Zhao D, Jiang G, Li J, Chen X, Li S, Wang J, Zhou Z, Pu S, Dai Z, Ma Y, Bi C*, Zhang X*. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research. 2022, 50:4161-4170.
  8. Wang P, Zhao D, Li J, Su J, Zhang C, Li S, Fan F, Dai Z, Liao X, Mao Z, Bi C*, Zhang X*. Artificial diploid Escherichia coli by a CRISPR chromosome-doubling technique. Advanced Science. 2023, 10(7):e2205855.
  9. Yang C, Dong X, Ma Z, Li B, Bi C*, Zhang X*. Pioneer factor improves CRISPR-based C-to-G and C-to-T Base Editing. Advanced Science. 2022, 9(26):e2202957.
  10. Xi Y, Xu H, Zhan T, Qin Y, Fan F*, Zhang X*. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. Metab Eng. 2022, 75:170-180.
  11. Xu L, Wang D, Chen J, Li B, Li Q, Liu P, Qin Y, Dai Z*, Fan F*, Zhang X*. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng. 2022, 70:115-128.
  12. Wang J, Zhao D, Li J, Hu M, Xin X, Price MA, Li Q, Liu L, Li S, Rosser SJ, Zhang C*, Bi C*, Zhang X*. Helicase-AID. A novel molecular device for base editing at random genomic loci. Metab Eng. 2021, 67:396-402.
  13. Shi Y, Wang D, Li R, Huang L, Dai Z*, Zhang X*. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metab Eng. 2021, 67:104-111.
  14. Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C*, Zhang X*. CRISPR-based metabolic pathway engineering. Metab Eng. 2021, 63:148-159.
  15. Wang D, Wang J, Shi Y, Li R, Fan F, Huang Y, Li W, Chen N, Huang L, Dai Z*, Zhang X*. Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform. Metab Eng. 2020, 61:131-140.
  16. Yu Y, Shao M, Li D, Fan F, Xu H, Lu F, Bi C, Zhu X*, Zhang X*. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli. Metab Eng. 2020, 61:152-159.
  17. Chen J, Fan F, Qu G, Tang J, Xi Y, Bi C, Sun Z*, Zhang X*. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020, 57:31-42.
  18. Yu Y, Zhu X, Xu H, Zhang X*. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab Eng. 2019, 56:181-189.
  19. Dai Z, Liu Y, Sun Z, Wang D, Qu G, Ma X, Fan F, Zhang L, Li S, Zhang X*. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab Eng. 2019, 51:70-78.
  20. Li Q, Fan F, Gao X, Yang C, Bi C, Tang J, Liu T, Zhang X*. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metab Eng. 2017, 44:13-21.
  21. Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C*, Zhang X*. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng. 2017, 43:85-91.
  22. Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C*, Zhang X*. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng. 2017, 43:37-45.
  23. Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X*. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng. 2014, 24:87-96.
  24. Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L*, Zhang X*. Metabolic engineering ofSaccharomyces cerevisiaefor production of ginsenosides.Metab Eng.2013, 20:146-156.
  25. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X*, Ma Y. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng. 2013, 17: 42-50.
  26. Shi A, Zhu X, Lu J, Zhang X*, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013, 16:1-10.