代表性成果

1)开发蛋白表达纯化技术体系:针对蛋白质表达纯化的难题,平台开发了多种表达载体及宿主库,开发了高效的毫克至克级蛋白质表达纯化技术,提升了蛋白质的表达纯化的效率。

  1. 建立了完善的表达工具库及表达筛选技术体系。搭建了包含HisGSTMBP等多种助溶标签的载体库及多种宿主(如大肠杆菌、酵母等)的宿主库,结合高效孔板摇床、多样化的蛋白质样品前处理流程进行高通量表达条件筛选,提升了蛋白质表达的成功率和效率,整体可溶表达率提升近80%

  1. 建立了毫克级高通量蛋白质表达技术体系。通过自动化设备和磁珠纯化技术,优化纯化流程,实现了2小时内完成24个样品的纯化目标,效率提升十倍以上。孔板培养菌株可实现同时最多9000个样品的高通量培养,对于100uL-4mL的样品的前处理量达400-1600个样品/天,毫克级样品纯化通量每年可达上万个,且纯度超过85%
  2. 建立了克级高通量蛋白质表达和纯化技术链。利用平行发酵罐和多套摇床,优化发酵和表达条件,实现每批次54个样品的放大培养;通过并联和串联自动化纯化系统,实现了从发酵样品到纯化的全流程自动化处理,提升了大规模样品的制备效率,百毫克至克级样品制备量达300-600个样品/年,纯度超过95%

2)搭建高通量、自动化、标准化的蛋白质性质测定方法,例如蛋白质稳定性测定、动力学测定等,高效快速筛选性能优异的蛋白质样品,提高了蛋白质性质及功能快速表征的能力,完成工业酶、膜蛋白、厌氧蛋白及抗体等的全面表征。


  1. 搭建了包括热稳定性检测、动力学稳定性检测在内的蛋白质稳定性检测体系,全面评估蛋白质在不同环境下的物理化学稳定性,一天内可完成144个样品的筛选,检测蛋白的TmTagg,粒径,多分散性等参数,一次实验快速准确地筛选出性质优良的工业酶突变体。


  1. 基于nanoDSF技术建立了高通量膜蛋白去垢剂稳定性筛选方法,通过16种不同的去垢剂筛选确定了膜蛋白稳定的去垢剂。


变性曲线(BCM曲线)叠加,通过转折点对应温度判断各个去垢剂条件下结构热稳定性差异

聚集曲线 (SLS266) 叠加通过横坐标峰值对应温度以及纵坐标散射光强度判断胶体稳定性的差异

动态光散射DLS判断样品质量:均一性和粒径


  1. 通过自动化表达定量鉴定系统,建立了对未知蛋白的自动化定性、定量鉴定,实现每次处理24个样品的高效分析,每天可进行50个样本的自动化表达鉴定、定量检测。


  1. 通过酶标仪,开发了荧光检测、化学发光检测和光吸收检测技术,搭建了工业蛋白及厌氧酶等的定量检测方法,实现高精度、全自动的蛋白定量分析,形成了年处理10000个样品的检测能力。
  2. 建立了高通量蛋白质-小分子互作检测技术,解析蛋白质与小分子化合物的相互作用,实现了蛋白质-小分子相互作用的高灵敏度测定,快速筛选样品,每天可进行上千个样品的相互作用检测。


3)建立了厌氧蛋白研究及分析平台:针对极端厌氧酶尤其是固氮酶或光合作用相关酶,搭建了厌氧蛋白技术研究体系,实现蛋白质在厌氧条件下的表达、制备及结构生物学样品制备等。以平台已搭建的包含厌氧菌培养、厌氧蛋白制备、厌氧酶结晶、厌氧酶性质研究等四大功能模块的六联手套箱为基础,开发了完整的高效厌氧研究技术体系,为厌氧蛋白研究提供了强有力的技术支撑。

厌氧蛋白培养、纯化及晶体筛选


4)搭建了高效结构生物学研究技术平台,从结构生物学样品制备到自动化观测,再到数据收集及高效数据处理和结构解析,形成了完整高效的技术链条,与AI辅助结构预测相结合,可以快速完成生物分子的结构解析。

  1. 建立了高通量蛋白质结晶条件筛选及优化技术体系,开发了针对可溶蛋白、膜蛋白、小分子等的快速、稳定的样品制备技术。基于自动化晶体筛选机器人提升样品筛选能力达到10000个条件/周,引进并优化了晶种法、脱水法、原位水解法等晶体优化技术,提升了晶体优化的成功率及效率。

晶种法获得优质晶体助力结构解析


  1. 建立了冷冻电镜样品制备平台,基于快速冷冻电镜制样仪和高真空镀膜仪组成的快速冷冻电镜制样系统,优化负染方法,开发了快速、稳定的冷冻电镜制样技术,可快速筛选获得符合要求的样品,对于难以结晶的样品,拓展了结构生物学研究的新手段。
  2. 搭建了自动化的数据收集及结构解析平台,建立了快速检测、高效收集生物大分子和小分子晶体数据的实验流程,结合冷冻电镜研究超大分子量蛋白质复合物结构,借助高性能结构解析工作中,实现数据的快速处理分析,构建了一套完整衍射数据收集、蛋白质结构解析的技术服务体系,衍射数据收集量达300/年。为多个研究单位提供蛋白质结构解析全流程服务,解析获得数百个包括小分子、蛋白质在内的晶体结构,为蛋白质基础研究及后续开发应用提供了强有力的支撑。

近五年参与发表论文:

[1] Y. Zhu, P. Chen, Q. Dong, Q. Li, D. Liu, T. Liu, W. Liu, Y. Sun, Protein engineering of transaminase facilitating enzyme cascade reaction for the biosynthesis of azasugars, iScience, 27 (2024) 109034.

[2] Z. Zheng, L. Cong, Z. Li, W. Liu, S. You, X. Han, Identification and characterization of a novel polyamide hydrolase, Sheng Wu Gong Cheng Xue Bao, 40 (2024) 3103-3113.

[3] Y. Zhang, Y. Li, Y. Chen, W. Liu, Q. Zhao, J. Feng, P. Yao, Q. Wu, D. Zhu, Manipulating Activity and Chemoselectivity of a Benzaldehyde Lyase for Efficient Synthesis of α-Hydroxymethyl Ketones and One-Pot Enantio-Complementary Conversion to 1,2-Diols, ACS Catalysis, 14 (2024) 9687-9700.

[4] Q. Wang, L. Cong, J. Guo, J. Wang, X. Han, W. Zhang, W. Liu, H. Wei, S. You, Structure‐Guided Engineering of a Short‐Chain Dehydrogenase LfSDR1 for Efficient Biosynthesis of (R)‐9‐(2‐Hydroxypropyl)adenine, the Key Intermediate of Tenofovir, Advanced Synthesis & Catalysis, (2024).

[5] J. Qiao, Y. Fang, Z. Li, J. Li, J. Cai, W. Liu, H. Wang, X. Zhu, X. Zhang, Experimental evolution reveals an effective avenue for d-lactic acid production from glucose-xylose mixtures via enhanced Glk activity and a cAMP-independent CRP mutation, Biotechnol Bioeng, 121 (2024) 3514-3526.

[6] J. Mican, D.s.M.M. Jaradat, W. Liu, G. Weber, S. Mazurenko, U.T. Bornscheuer, J. Damborsky, R. Wei, D. Bednar, Exploring new galaxies: Perspectives on the discovery of novel PET-degrading enzymes, Applied Catalysis B: Environmental, 342 (2024).

[7] Z.-L. Mei, C.-C. Li, X. Han, Y.-C. Tian, S.-H. Li, W. Liu, G. Qu, M.T. Reetz, Z. Sun, J.-A. Ma, F.-G. Zhang, Enzymatic Stereodivergent Access to Fluorinated β-Lactam Pharmacophores via Triple-Parameter Engineered Ketoreductases, ACS Catalysis, 14 (2024) 6358-6368.

[8] J. Li, R. Li, N. Shang, Y. Men, Y. Cai, Y. Zeng, W. Liu, J. Yang, Y. Sun, Enzymatic Synthesis of Novel Terpenoid Glycoside Derivatives Decorated with N-Acetylglucosamine Catalyzed by UGT74AC1, J Agric Food Chem, 72 (2024) 14255-14263.

[9] C. Che, W. Zhang, X. Xu, Z. Zheng, H. Wei, B. Qin, X. Jia, W. Liu, S. You, Structure-based reshaping of a new ketoreductase from Sphingobacterium siyangense SY1 toward alpha-haloacetophenones, Int J Biol Macromol, 277 (2024) 134157.

[10] C.H. Zhou, X. Chen, T. Lv, X. Han, J.H. Feng, W.D. Liu, Q.Q. Wu, D.M. Zhu, Flipping the Substrate Creates a Highly Selective Halohydrin Dehalogenase for the Synthesis of Chiral 4-Aryl-2-oxazolidinones from Readily Available Epoxides, ACS Catal, 13 (2023) 4768-4777.

[11] Y. Zhao, H. Wang, P. Wu, Z. Li, F. Liu, Q. Gu, W. Liu, J. Gao, X. Han, [Engineering the plastic degradation enzyme Ple629 from marine consortium to improve its thermal stability], Sheng Wu Gong Cheng Xue Bao, 39 (2023) 2040-2052.

[12] H.L. Zhang, X. Chen, T. Lv, Q. Li, W.D. Liu, J.H. Feng, X.T. Liu, P.Y. Yao, Q.Q. Wu, D.M. Zhu, Engineering a Carbonyl Reductase to Simultaneously Increase Activity Toward Bulky Ketone and Isopropanol for Dynamic Kinetic Asymmetric Reduction via Enzymatic Hydrogen Transfer, ACS Catal, 13 (2023) 9960-9968.

[13] P. Wu, Z. Li, J. Gao, Y. Zhao, H. Wang, H. Qin, Q. Gu, R. Wei, W. Liu, X. Han, Characterization of a PBAT Degradation Carboxylesterase from Thermobacillus composti KWC4, Catalysts, 13 (2023).

[14] M. Wei, X. Gao, W. Zhang, C. Li, F. Lu, L. Guan, W. Liu, J. Wang, F. Wang, H.M. Qin, Enhanced Thermostability of an l-Rhamnose Isomerase for d-Allose Synthesis by Computation-Based Rational Redesign of Flexible Regions, J Agric Food Chem, 71 (2023) 15713-15722.

[15] H. Qi, T. Wang, H. Li, C. Li, L. Guan, W. Liu, J. Wang, F. Lu, S. Mao, H.M. Qin, Sequence- and Structure-Based Mining of Thermostable D-Allulose 3-Epimerase and Computer-Guided Protein Engineering To Improve Enzyme Activity, J Agric Food Chem, 71 (2023) 18431-18442.

[16] Y. Chen, J. Gao, Y. Zhao, H. Wang, X. Han, J. Zhang, Q. Gu, Y. Hou, W. Liu, [Expression, purification and characterization of a novel bis (hydroxyethyl) terephthalate hydrolase from Hydrogenobacter thermophilus], Sheng Wu Gong Cheng Xue Bao, 39 (2023) 2015-2026.

[17] 李志帅, 高健, 陈纯琪, 郭瑞庭, 刘卫东, 韩旭, 聚对苯二甲酸乙二醇酯(PET)塑料水解酶结构,功能及改造, 生物加工过程, 20 (2022) 374-384.

[18] T. Zhang, P. Liu, H. Wei, X. Sun, Y. Zeng, X. Zhang, Y. Cai, M. Cui, H. Ma, W. Liu, Y. Sun, J. Yang, Protein Engineering of Glucosylglycerol Phosphorylase Facilitating Efficient and Highly Regio- and Stereoselective Glycosylation of Polyols in a Synthetic System, ACS Catal, 12 (2022) 15715-15727.

[19] L. Zhang, X. Zhang, J. Min, B. Liu, J.W. Huang, Y. Yang, W. Liu, L. Dai, Y. Yang, C.C. Chen, R.T. Guo, Structural insights to a bi-functional isoprenyl diphosphate synthase that can catalyze head-to-tail and head-to-middle condensation, Int J Biol Macromol, 214 (2022) 492-499.

[20] W. Zeng, X.Q. Li, Y.Y. Yang, J. Min, J.W. Huang, W.D. Liu, D. Niu, X.C. Yang, X. Han, L.L. Zhang, L.H. Dai, C.C. Chen, R.T. Guo, Substrate-Binding Mode of a Thermophilic PET Hydrolase and Engineering the Enzyme to Enhance the Hydrolytic Efficacy, ACS Catal, 12 (2022) 3033-3040.

[21] S. Wu, C. Xiang, Y. Zhou, M.S.H. Khan, W. Liu, C.G. Feiler, R. Wei, G. Weber, M. Hohne, U.T. Bornscheuer, A growth selection system for the directed evolution of amine-forming or converting enzymes, Nat Commun, 13 (2022) 7458.

[22] L.J. Wu, J.H. An, X.R. Jing, C.C. Chen, L.H. Dai, Y. Xu, W.D. Liu, R.T. Guo, Y. Nie, Molecular Insights into the Regioselectivity of the Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Catalyzed C-H Hydroxylation of Amino Acids, ACS Catal, 12 (2022) 11586-11596.

[23] R. Wei, G. von Haugwitz, L. Pfaff, J. Mican, C.P.S. Badenhorst, W. Liu, G. Weber, H.P. Austin, D. Bednar, J. Damborsky, U.T. Bornscheuer, Mechanism-Based Design of Efficient PET Hydrolases, ACS Catal, 12 (2022) 3382-3396.

[24] G. von Haugwitz, X. Han, L. Pfaff, Q. Li, H. Wei, J. Gao, K. Methling, Y. Ao, Y. Brack, J. Mican, C.G. Feiler, M.S. Weiss, D. Bednar, G.J. Palm, M. Lalk, M. Lammers, J. Damborsky, G. Weber, W. Liu, U.T. Bornscheuer, R. Wei, Structural Insights into (Tere)phthalate-Ester Hydrolysis by a Carboxylesterase and Its Role in Promoting PET Depolymerization, ACS Catal, 12 (2022) 15259-15270.

[25] G. Qu, Y. Bi, B. Liu, J. Li, X. Han, W. Liu, Y. Jiang, Z. Qin, Z. Sun, Unlocking the Stereoselectivity and Substrate Acceptance of Enzymes: Proline-Induced Loop Engineering Test, Angew Chem Int Ed Engl, 61 (2022) e202110793.

[26] L. Pfaff, J. Gao, Z. Li, A. Jackering, G. Weber, J. Mican, Y. Chen, W. Dong, X. Han, C.G. Feiler, Y.F. Ao, C.P.S. Badenhorst, D. Bednar, G.J. Palm, M. Lammers, J. Damborsky, B. Strodel, W. Liu, U.T. Bornscheuer, R. Wei, Multiple Substrate Binding Mode-Guided Engineering of a Thermophilic PET Hydrolase, ACS Catal, 12 (2022) 9790-9800.

[27] I.E. Meyer Cifuentes, P. Wu, Y. Zhao, W. Liu, M. Neumann-Schaal, L. Pfaff, J. Barys, Z. Li, J. Gao, X. Han, U.T. Bornscheuer, R. Wei, B. Ozturk, Molecular and Biochemical Differences of the Tandem and Cold-Adapted PET Hydrolases Ple628 and Ple629, Isolated From a Marine Microbial Consortium, Front Bioeng Biotechnol, 10 (2022) 930140.

[28] S.R. Malwal, N. Shang, W. Liu, X. Li, L. Zhang, C.C. Chen, R.T. Guo, E. Oldfield, A Structural and Bioinformatics Investigation of a Fungal Squalene Synthase and Comparisons with Other Membrane Proteins, ACS Omega, 7 (2022) 22601-22612.

[29] Z. Li, Y. Zhao, P. Wu, H. Wang, Q. Li, J. Gao, H.M. Qin, H. Wei, U.T. Bornscheuer, X. Han, R. Wei, W. Liu, Structural insight and engineering of a plastic degrading hydrolase Ple629, Biochem Biophys Res Commun, 626 (2022) 100-106.

[30] Y. Hu, H. Li, J. Min, Y. Yu, W. Liu, J.W. Huang, L. Zhang, Y. Yang, L. Dai, C.C. Chen, R.T. Guo, Crystal structure and biochemical analysis of the specialized deoxynivalenol-detoxifying glyoxalase SPG from Gossypium hirsutum, Int J Biol Macromol, 200 (2022) 388-396.

[31] Q. Chen, B.-B. Li, L. Zhang, X.-R. Chen, X.-X. Zhu, F.-F. Chen, M. Shi, C.-C. Chen, Y. Yang, R.-T. Guo, W. Liu, J.-H. Xu, G.-W. Zheng, Engineered Imine Reductase for Larotrectinib Intermediate Manufacture, ACS Catal, 12 (2022) 14795-14803.

[32] F.Q. Chen, Y.P. Zhao, C.H. Zhang, W. Wang, J. Gao, Q. Li, H.M. Qin, Y.J. Dai, W.D. Liu, F.F. Liu, H. Su, X. Sheng, A Combined Computational-Experimental Study on the Substrate Binding and Reaction Mechanism of Salicylic Acid Decarboxylase, Catalysts, 12 (2022).

[33] C.-C. Chen, M. Dai, L. Zhang, J. Zhao, W. Zeng, M. Shi, J.-W. Huang, W. Liu, R.-T. Guo, A. Li, Molecular Basis for a Toluene Monooxygenase to Govern Substrate Selectivity, ACS Catalysis, 12 (2022) 2831-2839.

[34] W. Liu, C. Ma, W. Liu, Y. Zheng, C.C. Chen, A. Liang, X. Luo, Z. Li, W. Ma, Y. Song, R.T. Guo, T. Zhang, Functional and structural investigation of a novel beta-mannanase BaMan113A from Bacillus sp. N16-5, Int J Biol Macromol, 182 (2021) 899-909.

[35] N. Liu, L. Wu, J. Feng, X. Sheng, J. Li, X. Chen, J. Li, W. Liu, J. Zhou, Q. Wu, D. Zhu, Crystal Structures and Catalytic Mechanism of l-erythro-3,5-Diaminohexanoate Dehydrogenase and Rational Engineering for Asymmetric Synthesis of beta-Amino Acids, Angew Chem Int Ed Engl, 60 (2021) 10203-10210.

[36] J. Li, G. Qu, N. Shang, P. Chen, Y. Men, W. Liu, Z. Mei, Y. Sun, Z. Sun, Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases, Green Synthesis and Catalysis, 2 (2021) 45-53.

[37] L.G. Graf, E.A.P. Michels, Y. Yew, W. Liu, G.J. Palm, G. Weber, Structural analysis of PET-degrading enzymes PETase and MHETase from Ideonella sakaiensis, Methods Enzymol., 648 (2021) 337-356.

[38] X. Gao, M. Wu, W. Zhang, C. Li, R.T. Guo, Y. Dai, W. Liu, S. Mao, F. Lu, H.M. Qin, Structural Basis of Salicylic Acid Decarboxylase Reveals a Unique Substrate Recognition Mode and Access Channel, J Agric Food Chem, 69 (2021) 11616-11625.

[39] L. Dai, Z. Chang, J. Yang, W. Liu, Y. Yang, C.C. Chen, L. Zhang, J.W. Huang, Y. Sun, R.T. Guo, Structural investigation of a thermostable 1,2-beta-mannobiose phosphorylase from Thermoanaerobacter sp. X-514, Biochem Biophys Res Commun, 579 (2021) 54-61.

[40] Y. Cui, Y. Chen, X. Liu, S. Dong, Y.e. Tian, Y. Qiao, R. Mitra, J. Han, C. Li, X. Han, W. Liu, Q. Chen, W. Wei, X. Wang, W. Du, S. Tang, H. Xiang, H. Liu, Y. Liang, K.N. Houk, B. Wu, Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy, ACS Catalysis, 11 (2021) 1340-1350.

[41] C.C. Chen, S.R. Malwal, X. Han, W.D. Liu, L.X. Ma, C. Zhai, L.H. Dai, J.W. Huang, A. Shillo, J. Desai, X.Q. Ma, Y.H. Zhang, R.T. Guo, E. Oldfield, Terpene Cyclases and Prenyltransferases: Structures and Mechanisms of Action, ACS Catal, 11 (2021) 290-303.

[42] C.C. Chen, X. Han, X. Li, P.C. Jiang, D. Niu, L.X. Ma, W.D. Liu, S.Y. Li, Y.Y. Qu, H.B. Hu, J. Min, Y. Yang, L.L. Zhang, W. Zeng, J.W. Huang, L.H. Dai, R.T. Guo, General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis, Nature Catalysis, 4 (2021) 425-430.

[43] C. Chen, X. Han, W. Liu, L. Ma, K. Liu, R.T. Guo, [Structure-based engineering of PET hydrolase from Ideonella sakaiensis], Sheng Wu Gong Cheng Xue Bao, 37 (2021) 3268-3275.

[44] S. Zhou, T.P. Ko, J.W. Huang, W. Liu, Y. Zheng, S. Wu, Q. Wang, Z. Xie, Z. Liu, C.C. Chen, R.T. Guo, Structure of a gut microbial diltiazem-metabolizing enzyme suggests possible substrate binding mode, Biochem Biophys Res Commun, 527 (2020) 799-804.

[45] L. Zhang, Z. Xie, Z. Liu, S. Zhou, L. Ma, W. Liu, J.W. Huang, T.P. Ko, X. Li, Y. Hu, J. Min, X. Yu, R.T. Guo, C.C. Chen, Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase, Nat Commun, 11 (2020) 2676.

[46] X. Xiao, S.S. Elsayed, C. Wu, H.U. van der Heul, M. Metsa-Ketela, C. Du, A.E. Prota, C.C. Chen, W. Liu, R.T. Guo, J.P. Abrahams, G.P. van Wezel, Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway, ACS Chem. Biol., 15 (2020) 2529-2538.

[47] H. Sun, T.P. Ko, W. Liu, W. Liu, Y. Zheng, C.C. Chen, R.T. Guo, Structure of an antibiotic-synthesizing UDP-glucuronate 4-epimerase MoeE5 in complex with substrate, Biochem Biophys Res Commun, 521 (2020) 31-36.

[48] M. Song, X. Zhang, W. Liu, J. Feng, Y. Cui, P. Yao, M. Wang, R.T. Guo, Q. Wu, D. Zhu, 2,3-Dihydroxybenzoic Acid Decarboxylase from Fusarium oxysporum: Crystal Structures and Substrate Recognition Mechanism, ChemBioChem, 21 (2020) 2950-2956.

[49] H.M. Qin, D. Gao, M. Zhu, C. Li, Z. Zhu, H. Wang, W. Liu, M. Tanokura, F. Lu, Biochemical characterization and structural analysis of ulvan lyase from marine Alteromonas sp. reveals the basis for its salt tolerance, Int. J. Biol. Macromol., 147 (2020) 1309-1317.

[50] T.Z. Li, Z.J. Tang, H.L. Wei, Z.J. Tan, P. Liu, J.L. Li, Y.Y. Zheng, J.P. Lin, W.D. Liu, H.F. Jiang, H.F. Liu, L.L. Zhu, Y.H. Ma, Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemo-rearrangement without the isolation of intermediates, Green Chem., 22 (2020) 6809-6814.

[51] J. Li, J.G. Yang, S.C. Mu, N. Shang, C. Liu, Y.M. Zhu, Y. Cai, P. Liu, J.P. Lin, W.D. Liu, Y.X. Sun, Y.H. Ma, Efficient O-Glycosylation of Triterpenes Enabled by Protein Engineering of Plant Glycosyltransferase UGT74AC1, ACS Catal, 10 (2020) 3629-3639.

[52] J.W. Huang, D. Niu, K. Liu, Q. Wang, L. Ma, C.C. Chen, L. Zhang, W. Liu, S. Zhou, J. Min, S. Wu, Y. Yang, R.T. Guo, Structure basis of non-structural protein pA151R from African Swine Fever Virus, Biochem Biophys Res Commun, 532 (2020) 108-113.

[53] C.C. Chen, J. Xue, W. Peng, B. Wang, L. Zhang, W. Liu, T.P. Ko, J.W. Huang, S. Zhou, J. Min, L. Ma, L. Dai, R.T. Guo, X. Yu, Structural insights into thebaine synthase 2 catalysis, Biochem Biophys Res Commun, 529 (2020) 156-161.

[54] C.C. Chen, L.H. Dai, L.X. Ma, R.T. Guo, Enzymatic degradation of plant biomass and synthetic polymers, Nat Rev Chem, 4 (2020) 114-126.

[55] C.-C. Chen, S.R. Malwal, X. Han, W. Liu, L. Ma, C. Zhai, L. Dai, J.-W. Huang, A. Shillo, J. Desai, X. Ma, Y. Zhang, R.-T. Guo, E. Oldfield, Terpene Cyclases and Prenyltransferases: Structures and Mechanisms of Action, ACS Catal, 11 (2020) 290-303.

[56] L. Zhang, T.P. Ko, S.R. Malwal, W. Liu, S. Zhou, X. Yu, E. Oldfield, R.T. Guo, C.C. Chen, Complex structures of MoeN5 with substrate analogues suggest sequential catalytic mechanism, Biochem Biophys Res Commun, 511 (2019) 800-805.

[57] K. Zhang, G. Qu, W. Liu, Z. Sun, [Structure-function relationships of industrial enzymes], Sheng Wu Gong Cheng Xue Bao, 35 (2019) 1806-1818.

[58] Z. Yang, L. Zhang, X. Yu, S. Wu, Y. Yang, Y. Hu, Q. Li, N. Shang, R.T. Guo, C.C. Chen, L. Dai, W. Liu, Crystal structure of TchmY from Actinoplanes teichomyceticus, Acta crystallographica. Section F, Structural biology communications, 75 (2019) 570-575.

[59] Y. Yang, L. Li, L. Yuan, X. Zhou, J. Duan, H. Xiao, N. Cai, S. Han, X. Ma, W. Liu, C.C. Chen, L. Wang, X. Li, J. Chen, N. Kang, J. Chen, Z. Shen, S.R. Malwal, W. Liu, Y. Shi, E. Oldfield, R.T. Guo, Y. Zhang, A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated Vgamma9Vdelta2 T Cell Activation, Immunity, 50 (2019) 1043-1053 e1045.

[60] X. Tang, J. Xue, Y. Yang, T.P. Ko, C.Y. Chen, L. Dai, R.T. Guo, Y. Zhang, C.C. Chen, Structural insights into the calcium dependence of Stig cyclases, Rsc Adv, 9 (2019) 13182-13185.

[61] S.R. Malwal, L. Chen, H. Hicks, F. Qu, W. Liu, A. Shillo, W.X. Law, J. Zhang, N. Chandnani, X. Han, Y. Zheng, C.C. Chen, R.T. Guo, A. AbdelKhalek, M.N. Seleem, E. Oldfield, Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis, J Med Chem, 62 (2019) 2564-2581.

[62] J. Ma, T.P. Ko, X. Yu, L. Zhang, L. Ma, C. Zhai, R.T. Guo, W. Liu, H. Li, C.C. Chen, Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1, Biochem Biophys Res Commun, 515 (2019) 621-626.

[63] C.J. Kuo, J. Gao, J.W. Huang, T.P. Ko, C. Zhai, L. Ma, W. Liu, L. Dai, Y.F. Chang, T.H. Chen, Y. Hu, X. Yu, R.T. Guo, C.C. Chen, Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis, Biochim. Biophys. Acta, Gen. Subj., 1863 (2019) 1351-1359.

[64] T.P. Ko, X. Xiao, R.T. Guo, J.W. Huang, W. Liu, C.C. Chen, Substrate-analogue complex structure of Mycobacterium tuberculosis decaprenyl diphosphate synthase, Acta crystallographica. Section F, Structural biology communications, 75 (2019) 212-216.

[65] S. Han, X. Li, Y. Xia, Z. Yu, N. Cai, S.R. Malwal, X. Han, E. Oldfield, Y. Zhang, Farnesyl Pyrophosphate Synthase as a Target for Drug Development: Discovery of Natural-Product-Derived Inhibitors and Their Activity in Pancreatic Cancer Cells, J Med Chem, 62 (2019) 10867-10896.

[66] Y. Feng, X. Yu, J.W. Huang, W. Liu, Q. Li, Y. Hu, Y. Yang, Y. Chen, J. Jin, H. Li, C.C. Chen, R.T. Guo, Crystal structure and proposed mechanism of an enantioselective hydroalkoxylation enzyme from Penicillium herquei, Biochem Biophys Res Commun, 516 (2019) 801-805.

[67] X. Chen, H.L. Zhang, M.A. Maria-Solano, W.D. Liu, J. Li, J.H. Feng, X.T. Liu, S. Osuna, R.T. Guo, Q.Q. Wu, D.M. Zhu, Y.H. Ma, Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase, Nature Catalysis, 2 (2019) 931-941.

[68] Z. Chang, T. Ansbacher, L. Zhang, Y. Yang, T.P. Ko, G. Zhang, W. Liu, J.W. Huang, L. Dai, R.T. Guo, D.T. Major, C.C. Chen, Crystal structure of LepI, a multifunctional SAM-dependent enzyme which catalyzes pericyclic reactions in leporin biosynthesis, Org Biomol Chem, 17 (2019) 2070-2076.